

Coastal Climate Change & Adaptation: PART II - Evaluation/Exercises

Co-Director - C-Change (Canada)

Professor Emeritus, Telfer School of Management, University of Ottawa

Professeur associé, Université Sainte-Anne

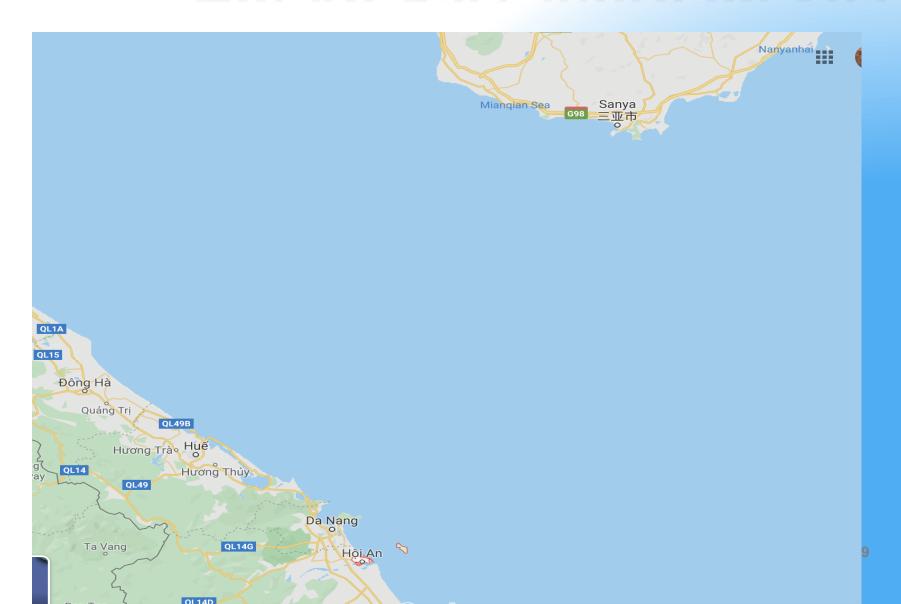
Presentation to the 5th China- ASEAN Academy on Ocean Law & Governance, NISCSS Haikou, Hainan

PART II -Morning, November 19, 2019

*Coastal Climate Change & Adaptation - Outline

PART II

- 5. Assessing Vulnerabilities
- 6. Estimating Coastal Impacts
- 7. Adaptation Problem Solving and Strategy Options
- 8. Evaluating Decisions**
- 9. Climate Change Governance

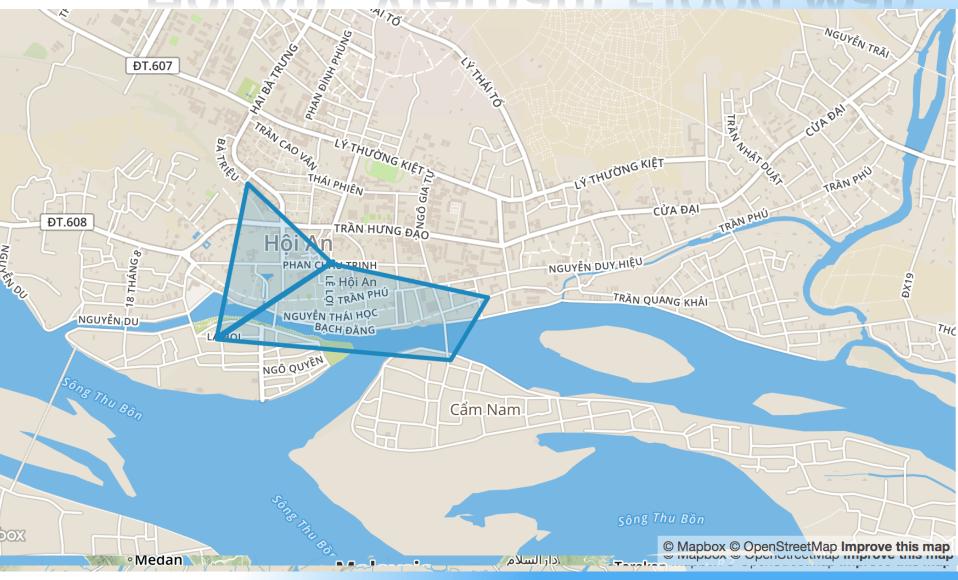

**Class Assignment

*5. Assessing Vulnerabilities

* 2019 Named Storms

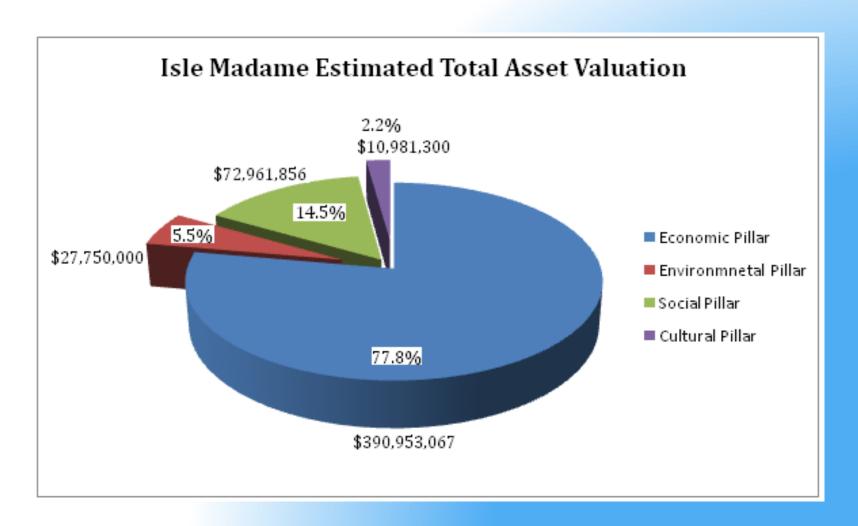
	Sustained				Damage	
		wind	Pressur			Death
Named Storms	Dates active	speeds	е	Areas affected	(US\$)	s
	Dec 31, 2018 – Jan 4,	051 "	00015	Natuna	0.4.5-7	4.0
<u>Pabuk</u>		85 km/h		Islands, Vietnam, Malaysia, Thailand, Myanmar	\$157 million	10
Wutip (Betty)	February 18 – March 2	195 km/h	920 hPa	Caroline Islands, Mariana Islands	\$3.3 million	0
Wipha -	July 30 – August 4	85 km/h		South China, Vietnam, Laos	\$44.3 million	27
Francisco	August 1 – 8	130 km/h	970 hPa	Japan, Korean Peninsula	Unknown	1
				Caroline Islands, Philippines, Ryukyu Islands,		
<u>Lekima (Hanna)</u>	August 2 – 13	195 km/h	925 hPa	Taiwan, China	\$9.28 billion	90
				Mariana Islands, Japan, Korean Peninsula,		
Krosa	August 5 – 16	140 km/h	965 hPa	Russian Far East	\$20.5 million	3
Doily (Inong)	August 10 00	OE long/b	005 600	Dhilippings Taiwan Cauth China	موزاانم و ۱۹۵۵	
Bailu (Ineng)	August 19 – 26	95 km/h	985 NPa	Philippines, Taiwan, South China	\$28.2 million	3
Podul (Jenny)	August 24 – 31	75 km/h	992 hPa	Yap, Philippines, Vietnam, Laos, Thailand, Cambodia	\$2.43 million	15
1 Oddi (ochiny)	August 30 – September	7 J KIII/II	332 III a	Thailand, Garibodia	Ψ2.43 ΠΠΠΟΠ	10
Faxai	10	155 km/h	955 hPa	lanan	\$7 billion	3
I dital		TOO KITI/IT	000 111 4	Capan	Ψ7 Billion	U
Kajiki (Kabayan)	August 30 – September 7	65 km/h	996 hPa	Philippines, South China, Vietnam, Laos	\$12.9 million	6
Lingling				Philippines, Ryukyu Islands, Korean Peninsula,		
(Liwayway)	August 31 – September 7	165 km/h	940 hPa	Northeast China, Russian Far East	\$191 million	8
, , ,				·		
Marilyn	September 10 – 13	55 km/h	996 hPa	None	None	0
·	·		1000 hP			
Peipah	September 13 – 16	65 km/h	а	Mariana Islands, Bonin Islands	None	0
Tapah (Nimfa)	September 17 – 22	120 km/h	970 hPa	Taiwan, East China, Japan, South Korea	\$7.9 million	3
	September 25 – October			Mariana Islands, Taiwan, Japan, East China,		
Mitag (Onyok)	3	140 km/h	965 hPa	South Korea	Moderate	10
				Mariana Islands, Japan, South Korea, Russian		
<u>Hagibis</u>	October 4 – 13	195 km/h	915 hPa	Far East	TBA	88

*Hoi An, East Vietnam Sea

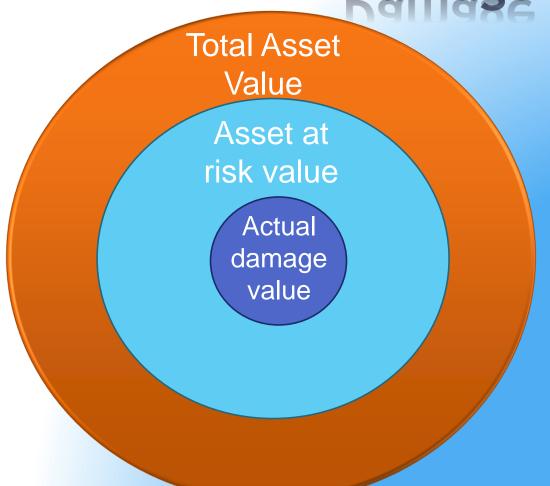

*Hoi An flooding - Typhoon Pamrey

*Vietnam's death toll from Typhoon Damrey rises to 61, with heavy damage to more than 80,000 homes and roads. Hoi An is one of the cities seriously affected, but authorities say the coming Asia Pacific Economic Cooperation (APEC) summit of the region's leaders will not be disrupted.

*Video:

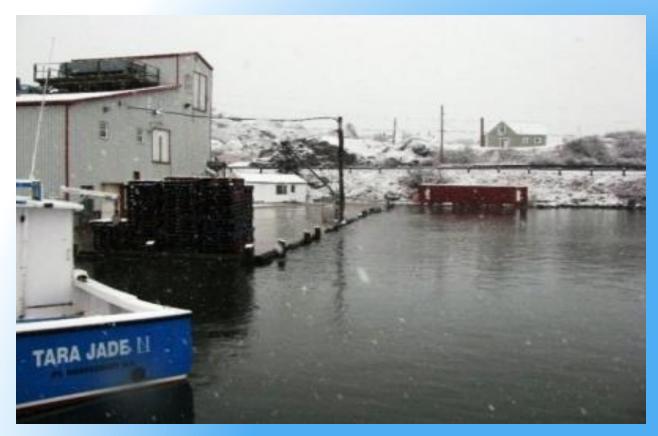

https://www.scmp.com/video/asia/2118740/vietn am s-historic-hoi-flooded-typhoon-death-toll-rises (South China Morning Post, Nov 2017)

*Hoi An, Vietnam Flood Map



*6. Estimating Coastal Impacts

* Isle Madame Assets (Pakdel 2011)


*Asset - At-Risk Assessment-Damage Model

Assessing Vulnerability Premium Crab plant Jan 2, 2010 "No Name" storm

Source:

www.coastalchange.ca Gallery

*7. Adaptation Problem Solving and Strategy Options

* Adaptation Strategy Options (Pilkey & Young 2009)

1. Protect

Hard armouring (sea walls, groins)
Soft armouring (mangroves, wetlands)

- No changes to buildings or use
- Costly Requires expert design, needs periodic maintenance and upgrading

2. Accommodate

Continued use of lands / structures, with some changes

- Low costs / Low regrets
- No costs / No regrets (mangroves)

3. Retreat

Accept flooding and damage will occur

- Protect/accommodate not feasible
- Change uses, move structures

4. Do Nothing

*Protection options

- *Thames River constructed 1974-1982
- *https://www.youtube.com/watch?v=Dvg2asACs G0

*Capital Cost = 534 million British pounds or 1.6 billion (2016)

*Accommodate options

- *Natural solutions ponds, wetland maintenance, catchments https://www.youtube.com/watch?v=IKlcUY3glqM
- *Dutch water defences https://www.youtube.com/watch?v=spJGhHrnGg
- *Reinforced and alternate construction/flood plain management
- * https://www.youtube.com/watch?v=21 YAP8RF_sw
- *Capital Cost = 1 billion Euro/year

*Retreat options

- *Move people away (to where?)
- *Move buildings/structures away
- *Science paper:
- *https://science.sciencemag.org/content/365/6455/761
- *Capital Cost?

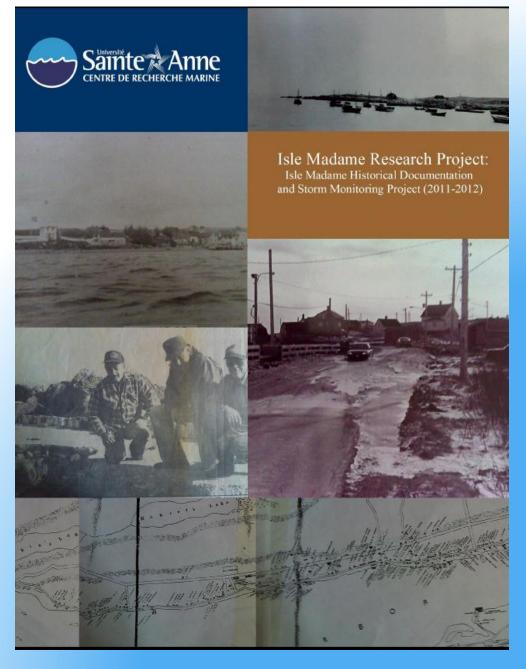
*Po nothing

*Capital Cost = \$0

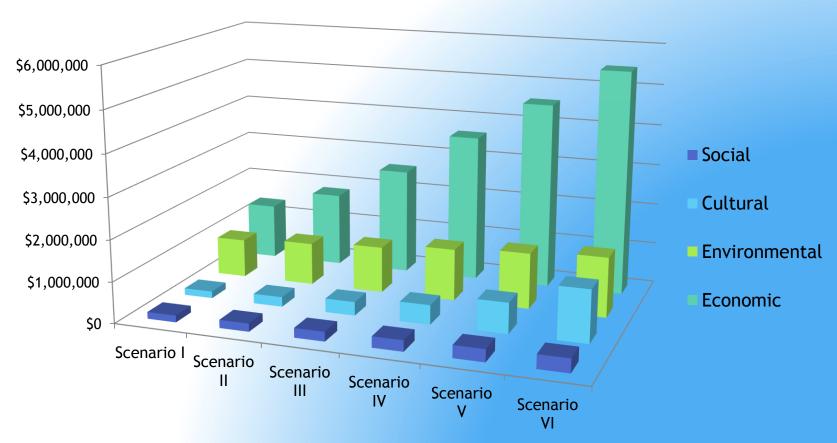
* Hoi An Adaptation Strategies

Adaptation Strategy	Description	Application
1) Protect	breakwaters, gabions and groins	Construct 3.75m sea walls Labor skills adjustment Public service increase in cost Capital cost \$100million/yr over 5 yrs
2) Accommodate	•	structures Attributed land as Public Works
3) Retreat	Abandon areas close to coast; avoid direct impact from storms; land swapping, or management strategies such as rezoning, insurance denial, or tax policies	Attributed increase in land to parks
4) Status Quo (Do Nothing)	Toleration of all storm damages without attempting to mitigate storm impacts	No adaptation strategy (Do nothing/Status Quo) Capital cost of \$0

*Hoi An Adaptation Strategy Decision?

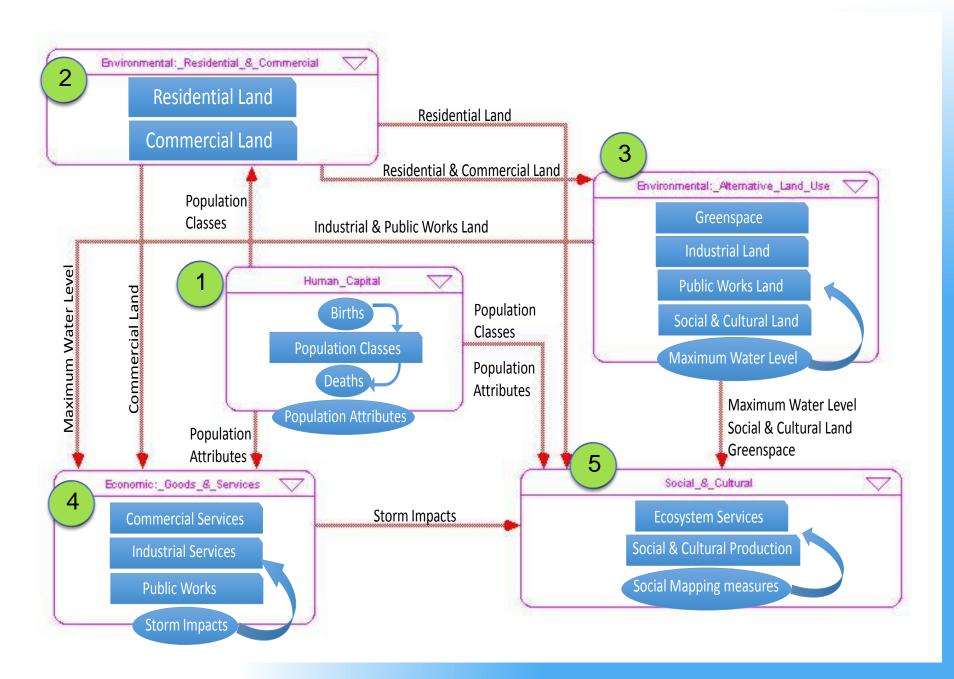

- *Based on Capital Costs of options?
- *What do community participants think? What is their role?
- *How precautious is the decision?
- *How effective/risky is the decision?
- *What else should be considered in the decision?
 - *Annual event impacts/costs of Typhoon Damprey (2017)
 - *Storm severity impacts differ from year-to-year
 - *Tolerance of the decision to different severe storms

Université Sainte-Anne

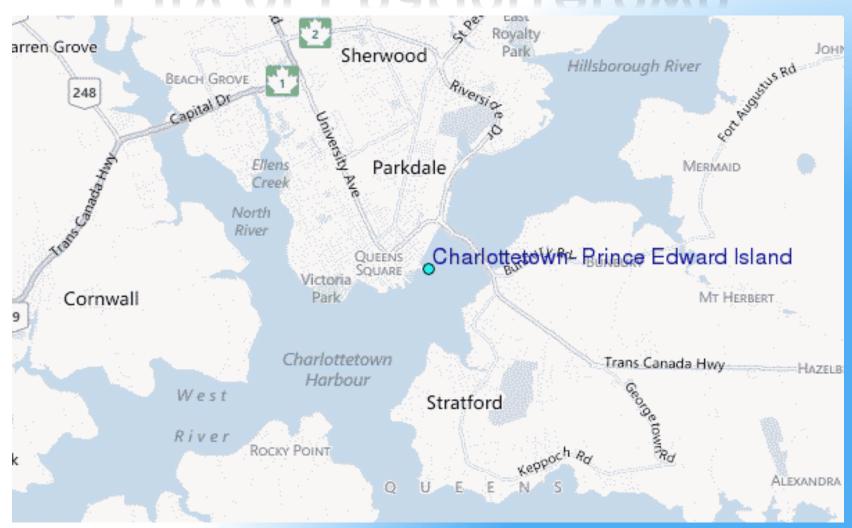

Isle Madame Vulnerability Report

Report Prepared by:

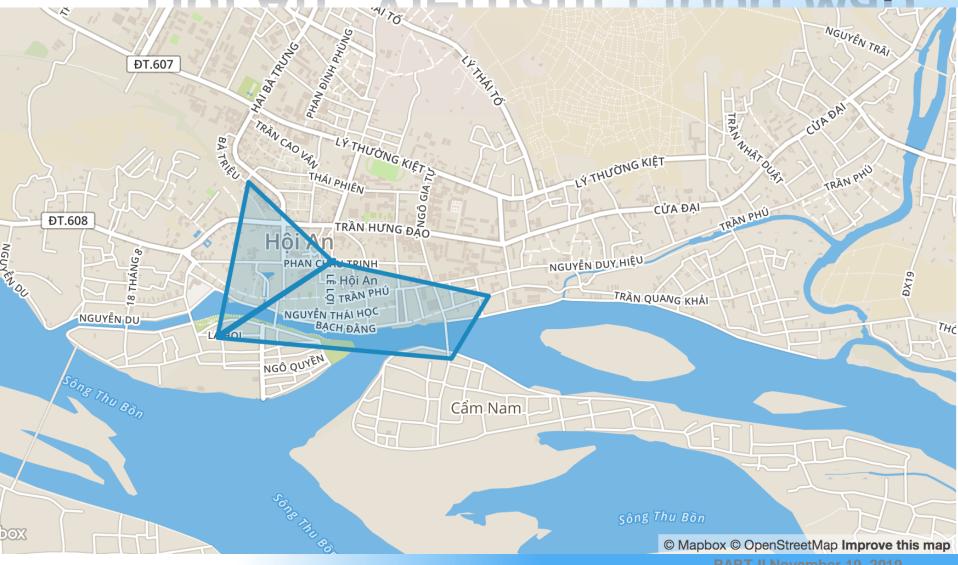
Aleasha David,
Recherchiste,
Centre de recherche marine
and
Michelle Thériault,
Directrice,
Centre de recherche marine



Isle Madame Total Estimated Damage Costs for Storm Scenarios I-VI

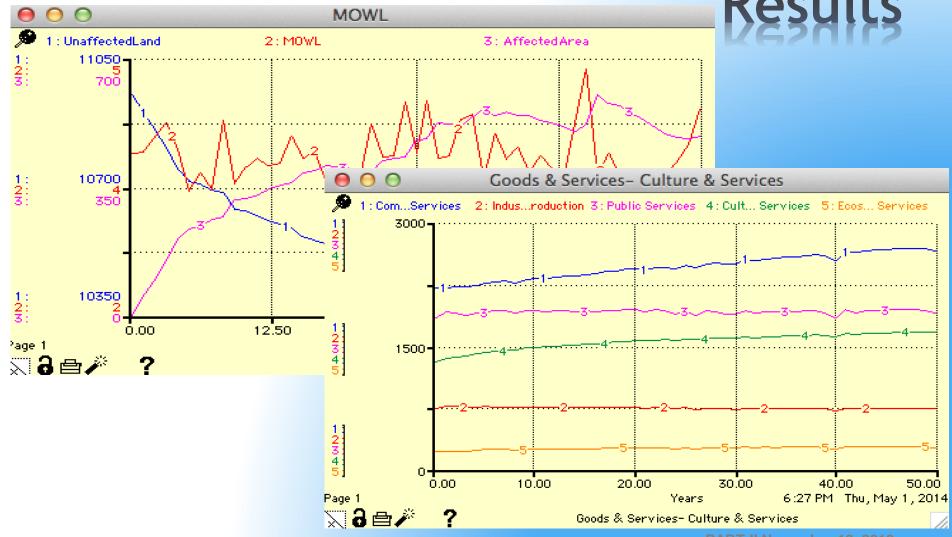


Strategic Systems Simulation


- ODevelopment of specific adaptation strategies
 - Protect, Accommodate, Retreat, Status Quo (Do Nothing)
- Application of Static and/or System Dynamics model
- OPillars of Sustainability/Community
 Preference
 - Environmental, Economic, Social & Cultural
- Adaptation strategy evaluation indicators
 - Vulnerability, Resilience, Adaptive Capacity

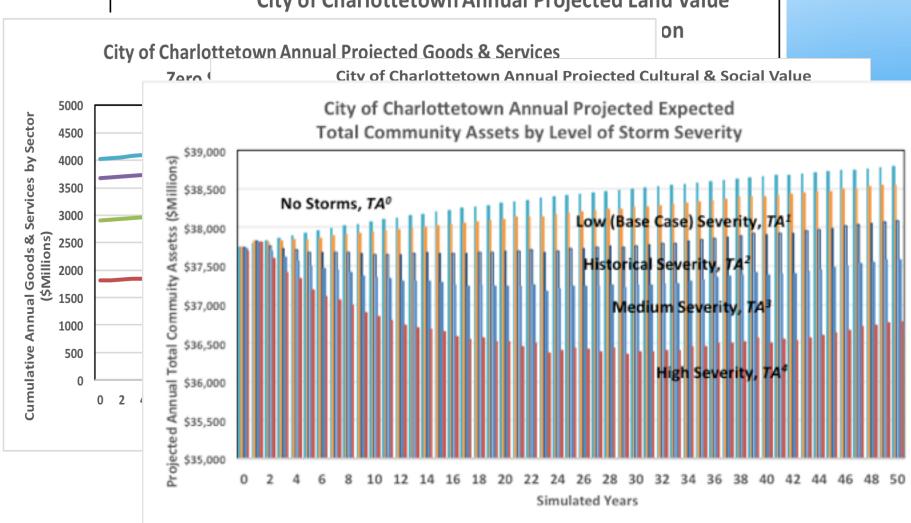
*City of Charlottetown

*Hoi An, Vietnam Flood Map


* Attributed Land Value Assets

Land Use	Space (acres)	Land Value (\$M/acre)	Description/Sources		
Residential	3,225	\$2.855	Housing - average discounted selling value/acre for listings for detached bungalows		
Commercial	2,680	\$3.484	Commercial property - average discounted selling value listings for Business and Retail properties		
Industrial 1,239 \$4.14		\$4.149	Industrial property - average discounted selling value listings for Industrial and Office properties		
Green space	472	\$1.500	Estimated value of city park lands, sport fields, trails, open recreation space		
Public works	2,011	\$3.000	Estimated value of infrastructure for water, electrical power, and sewage/water treatment, roadways, bridges, maintenance		
Cultural & Social	1,326	\$2.000	Estimated value of lands for schools, hospitals, community centres, libraries, arenas		

* Annual Storm Severity Levels, MOWL


Storm Severity	Storm Description	Application	IPCC GHG Emissions
I. Low (BaseCase)	Modal MOWLs signal storms that result in minimal damage to property and infrastructure. Assumed storm definition for the Base Case scenario	α = 2.0 β =0.303 Max MOWL<4.0m	RCP 2.6—emissions peak 2010-2020 then decline substantially
II. Historical	Modal MOWLs consistent with historical data values; storms result in occasional appreciable damage to property and infrastructure.	α = 3.0 β =0.303 Max MOWL<4.5m	RCP 4.5—emissions peak by 2040 then decline
III. Medium	Modal MOWLs consistent with the increasing historical trend of the 20st century; result in considerable damage to property and infrastructure.	α = 3.5 β =0.303 Max MOWL<5.0m	RCP 6.0–emissions peak by 2080 then decline
IV. High	Modal MOWLs signal storms predicted with high certainty into the 21 st century; result in significant damage to property and infrastructure.	α = 4.0 β =0.303 Max MOWL<5.5m	RCP 8.5—emissions continue to rise over 21st century

*System Pynamics View - STELLA Results

City of Charlottetown Annual Projected Land Value

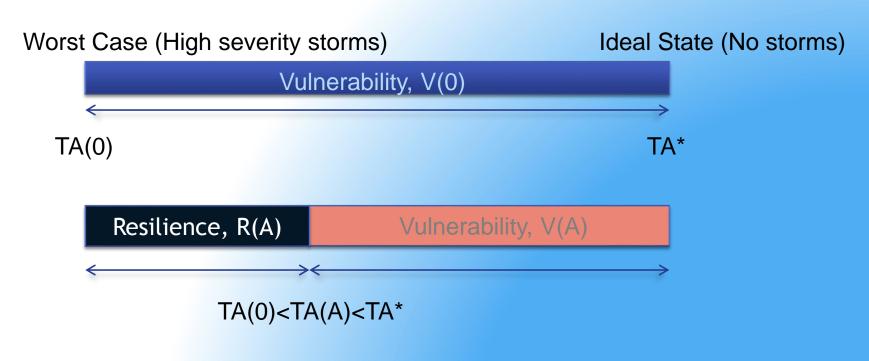
*Simulation Scenarios

No.	Scenario Name	Controllable Variables - Adaptation Strategies	Uncontrollable Variables - IPCC Analogy/Storm Severity
RO	Base Case/ Benchmark	No adaptation strategy (Do nothing/Status Quo)	Low severity storms, IPCC, RCP 2.6: 2.0
R1	Worst Case	No adaptation strategy (Do nothing/Status Quo)	High severity storms, IPCC, RCP 8.5: 4.0
R2	Protect-Worst Case Storms	Protect with 3.75m seawalls Labor skills adjustment for sea walls construction (professional) \$100m/yr investment in 5yrs	High severity storms, IPCC, RCP 8.5: 4.0 and Strategy modification: IF MOWL<3.75m then 'No Impacts' ELSE 'Impacts'
R3	Accommodate - Worst Case Storms	Labor skills adjustment Attributed land as Public Works Public service increase cost \$50m/yr over 10 years	High severity storms, IPCC, RCP 8.5: 4.0 and Strategy modification: New MOWL = .75 Original MOWL
R4	Retreat - Worst Case Storms	Adjustment to work skills Public service increase cost Increase in Greenspace \$75m/yr over 10 years	High severity storms, IPCC, RCP 8.5: 4.0
R5		Labor skills adjustment Attributed land as Public Works Public service increase	Historical severity storms, IPCC, RCP 4.5: 3.0 and Strategy modification: New MOWL = .75 Original MOWL

*8. Evaluating Decisions

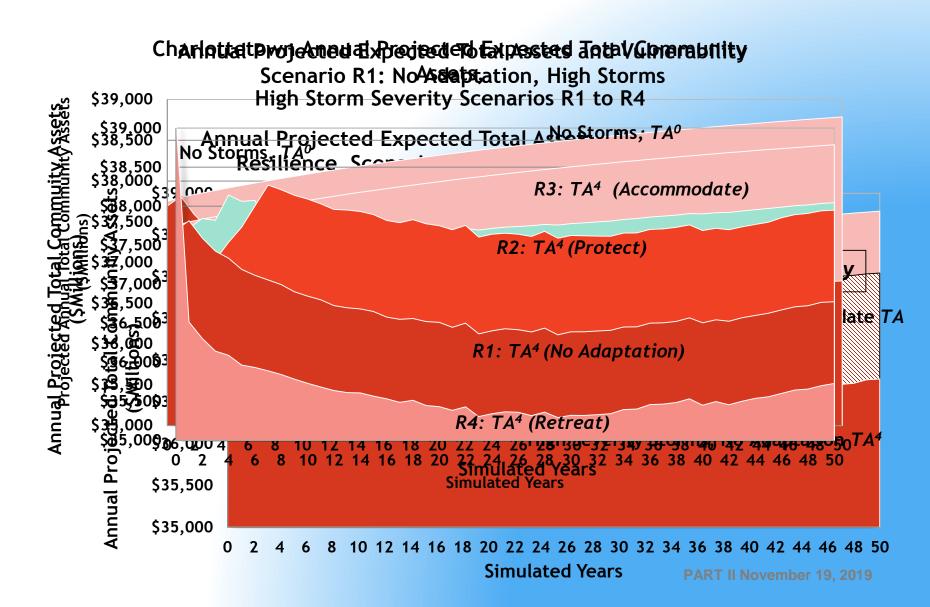
Evaluation of Strategy Alternatives

*Methods:

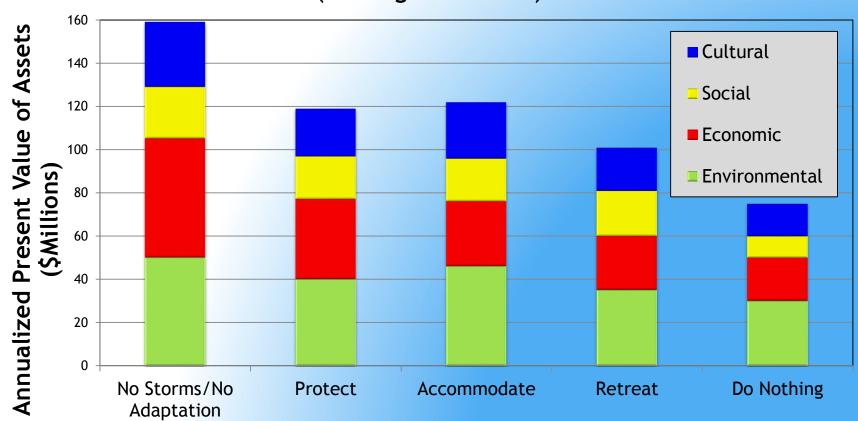

- *Static analysis AHP application, multiple participants (SEPS paper Camare & Lane 2015)
- *Dynamic analysis SD model over strategic planning period (50 years) Lane et al 2017, 2018

*Indicators:

- *Vulnerability expected storm damage estimates by sustainability pillar
- *Resilience function of adaptation strategy as reduction of 'no action' vulnerability
- *Adaptive Capacity resilience (reduced vulnerability) as a proportion of total vulnerability


*Yulnerability Gap with Strategy Lane et al 2018

Community Asset Status


Adaptive Capacity: AC(A) = RA(A)/V(0)

Storm Simulation Results: Vulnerability & Resilience

No Weights- Annualized Strategy Evaluation

Hoi An Flooding Example
Annualized Adaptation Strategy Evaluation
(Unweighted Pillars)

* Evaluating Weighted Assets by Profile Priorities

- *Different communities/nations have different priorities re the Pillars of Sustainability
- *Requires weighting the asset results corresponding to each adaptation scenario
- *Consider analysis of the Hoi An flooding problem weighted by the participants of the China-ASEAN Academy
- *Note similarities and differences among weights and preferred adaptation strategy options

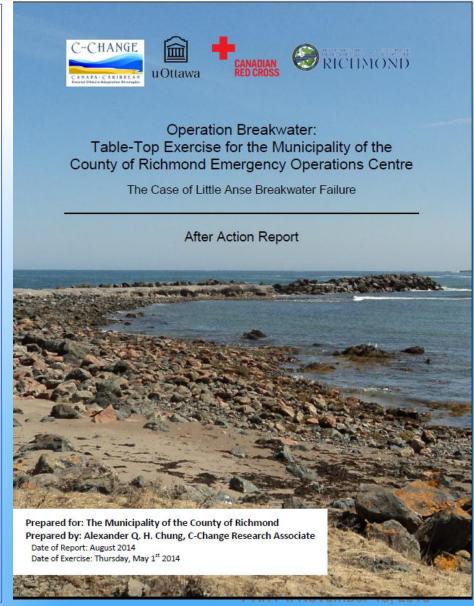
*Participants' Exercise - Decision Evaluation

C-Change Little Anse Breakwater Workshop, May 1, 2014 Chung (2014)

Operation Breakwater:
Tabletop Exercise for the Municipality of the
County of Richmond Emergency Operations
Centre

The Case of Little Anse Breakwater Failure

Alexander Q.H. Chung Telfer School of Management University of Ottawa


©Alexander Q.H. Chung 2014

Dimension	Attribute	Charlottetown	Isle Madame	Gibsons	Iqaluit
(1)	Preparedness Planning (0.60)	0.734	0.464	0.339	0.339
Plans, Local Governance &	Local Governance (0.20)	0.750	0.450	0.450	0.450
Social Services (0.129)	Social Services (0.20)	0.200	0.800	0.800	0.000
(2) Training, Education &	Capacity Building (0.50)	0.500	0.500	0.250	0.375
Community Awareness (0.259)	Public Awareness (0.50)	0.467	0.305	0.263	0.473
(3)	Incident Command Sys. (0.333)	1.000	1.000	1.000	1.000
Resources & Emergency	Resources (0.333)	0.567	0.279	0.279	0.246
Services (0.195)	Emergency Operations (0.333)	0.334	0.334	0.334	0.334
(4)	Early Warning & Public Information (0.666)	0.647	0.500	0.433	0.373
Communication & Collaboration (0.195)	Community Collaborative Networking (0.333)	0.600	0.800	0.500	0.700
(5)	Data Collection & Management (0.20)	0.333	0.111	0.167	0.056
Monitoring & Forecasting	Hazard & Vulnerability Analysis (0.40)	0.820	0.489	0.410	0.302
(0.221)	Environmental Forecasting (0.40)	0.778	0.389	0.389	0.611
Aggregate Preparedness & Response	Index Value	0.609	0.477	0.396	0.427

*Conclusions toward improved community resilience:

- *Enable community collaboration
 - * Designing 'community neighborhoods'; cell phones to inform community members or their neighbors' status and needs Lu(2013)
- *Encourage social networking activities
 - * increasing access and basic training of community members in electronic and other social networking and communication activities (e.g., Facebook, Twitter)
- *Support wellness, recreational lifestyle activities (Anielski, 2009)
- *Develop community logistics for emergency events Liu(2014)
- *Emergency preparedness workshops Chung(2014)
 - * Table Top exercise to inform local residents of the available emergency procedures and support, engage volunteer contributions and participation of community members
- * Disseminate preparedness to local schools to inform families

*9. Climate Change Governance

*Climate Change Management

- *Global Governance
 - *UNFCCC, IPCC, COP21 (Paris), COP22 (Marrakech), COP23 (Bonn), COP24 (Katowice), COP25 (Chile/Madrid) Dec 2019
 - *Sendai Framework on SIDR
- *International Protocols
- *Canadian Initiatives
- *Community Participation and Response

*COP 25 - Madrid, Spain

- * Original host: Santiago, Chile
- *Anti-government protests and social unrest in Chile led President Sebastián Piñera to renounce hosting the COP25 on October 30 (Forbes.com report_Nov 4/19:https://www.forbes.com/sites/anagarciavaldivia/2019/11/04/madrid-to-organize-un-cop25-in-record-time/#391a8a372354)
- * Dates: December 2-13, 2019
- * From COP25 Vision: "Time for Action"
- * The whole world is living a process of transformation towards a truly sustainable development. Raising the levels of ambition with a balance between mitigation and adaptation is essential. For this purpose, we need the participation of both the States and local governments, and the private sector.
- * The COP must encourage concrete climate action, ensuring an inclusive process for all parties and the formal integration of the scientific world and the private sector. Our challenge is to achieve a transition towards increased action and that is perceived by the general public. Climate change is a reality now, not in 50 years' time.

* Website: ?

*Climate Change in the Pacific

2nd Symposium on Climate Change in the Pacific Region (Pacific Adapt 2019) Lautoka, Fiji, 21st-22nd August 2019

International Climate Change Information Programme (ICCIRP)

organised in cooperation with the University of the South Pacific, the University of Fiji, the National University of Fiji and various partners from across the Pacific Region

The main aim of the event is to contribute towards the documentation and dissemination of climate change initiatives in the Pacific Region, which may lead to a greater resilience, and contribute to an increased adaptation capacity.

https://www.youtube.com/watch?v=I3fwCgSxTw8

*Climate Change in Asia - IPCC AR5 report 2018

- *ASIA (Chapter 24 AR5)
- *https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-Chap24_FINAL.pdf
- *Decision making (Chapter 2 AR5):
 https://www.ipcc.ch/site/assets/uploads/2018
 /02/WGIIAR5-Chap2_FINAL.pdf

*Local Community Response

- *Resource needs
- *Bottom up
- *Community participation recycling, reusing, good practices
- *'Teach the children well'!

Questions/Discussions

IOI-CANADA

Canadian Operational Centre of the International Ocean Institute

C-CHANGE

Coastal Climate Adaptation Strategies

